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Abstract 

Background:  Breast Cancer (BC) is the most common cancer in women worldwide and, although 70% of patients 
are responsive to selective Estrogen Receptor (ER) modulators such as Tamoxifen (Tam), patients’ survival is comprised 
by resistance to endocrine therapy. Brazilian flora, especially the Amazon biome, is one of the richest global sources of 
native species with potentially bioactive compounds. Arrabidaea chica is a plant native to the Amazon that has been 
used in the treatment of different diseases. However, its action on BC remains unclear.

Methods:  Herein the biological effects of the chloroform extract of A. chica (CEAC) were evaluated on BC cells and 
in in vivo model. After confirmation of CEAC antioxidant capacity, cells were treated with CEAC and Tam, alone and 
with CEAC+Tam. The cell viability was evaluated by MTT and hormone receptor transcripts levels were assessed (ESR1, 
ESR2 and AR). Finally, anticarcinogenicity of CEAC was recorded in Drosophila melanogaster through Epithelial Tumor 
Test (ETT).

Results:  The study confirmed the antioxidant activity of CEAC. CEAC was selective for MCF-7, downregulating ESR2 
and AR transcripts and upregulating ESR2 expression. The modulatory effects of CEAC on ERs did not differ between 
cells treated with Tam and with CEAC+Tam. Interestingly, previous treatment with CEAC, followed by treatment with 
Tam promoted a significant decrease in cell viability. The extract also presented anticarcinogenic effect in in vivo assay.

Conclusion:  The bioassays on breast tumor cells demonstrated the antiproliferative activity of the extract, which 
modulated the expression of hormone receptors and sensitized luminal tumor cells to Tam. These results suggest that 
CEAC could be a complementary treatment for BC.
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Background
Epidemiological data on cancer are still alarming with 
an annual global incidence of over 439.2 new cases per 
100,000 men and women per year. In 2020, there were 
estimated 9.9 million deaths [1, 2]. Breast cancer (BC) 
remains the most common non cutaneous tumor among 
women worldwide [3–5]. Its occurrence is steadily 
increasing in developing countries in which between 1 
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in 8 (about 12%) women will develop invasive BC during 
her lifetime [6, 7]. Worldwide, 2,088,849 million new BC 
cases and 626,679 deaths were recorded in 2018, expect-
ing 3 million cases in 2030 [8].

BC is a hormone-related tumor [9, 10]. Therefore, 
nuclear receptor (NR) family of transcription factors 
plays essential roles in development and maintenance of 
malignant breast cells [11]. Estrogen receptor (ER) and 
Androgen receptor (AR) are frequently co-expressed in 
BC, although they may behave in different ways in view 
of the tumor heterogeneity [12]. ER-α and ER-β have sim-
ilar binding affinities for estrogens; share a high degree 
of homology in the DNA-binding regions but interact 
with different other proteins suggesting divergence in 
transcriptional machinery control [13]. Although distinct 
genes codify for ER-α and ER-β, they can exist as heter-
odimer, and ER-β may modulate ER-α activity [14]. AR is 
structurally similar to ERs and how it drives, promotes or 
controls breast tumorigenesis remains largely unexplored 
[15, 16].

In this context, assessment of a breast cancer’s receptor 
status is essential to classify and define therapeutic strat-
egies [17]. Accordingly, BC is categorized in four main 
molecular subtypes based on ER-α, progesterone recep-
tor (PgR), and human epidermal growth factor receptor 
2 (Her2) expression [11]. The tumors are divided into 
Luminal type expressing ER and/or PgR, being Luminal 
A when lack Her2, and Luminal B when express high 
levels of Ki67. Luminal B may or may not express Her2. 
Her2 enriched are BC which are negative for hormone 
receptors and present high levels of Her2. Finally, triple-
negative BC do not express any of above markers [18, 19].

Nearly 70% of breast tumors express hormone recep-
tors (ER and/or PgR) with better outcomes [20, 21]. 
Moreover, a high prevalence of ER-positive BCs express 
the androgen receptor (AR), and AR expression may be 
also associated with better outcome [22]. ER-α-positive 
BCs initially respond to antagonists or antiestrogens 
and pre- and postmenopausal women have benefited 
from these therapeutic strategies [23]. These tumors are 
mainly treated with Tamoxifen (Tam), which has been 
clinically used for the last 40 years [24]. Tam is a triph-
enylethylene derivative that functions as selective ER 
modulator (SERM) [25, 26]. In the breast, Tam acts as an 
antagonist that binds to ER and impairs estrogenic effects 
[27, 28]. Tam can reduce the chance of recurrence in 40 
to 50% after 5 years and 30% after 10 years of treatment 
[29]. However, about 30% of women develop de novo or 
acquire resistance to hormonal therapies progressing to a 
metastatic disease [30, 31].

Tam resistance has been associated with the expres-
sion levels of ER-α and ER-β [32, 33] especially to lower 
levels of ER-β [34]. The resistance toward Tam treatment 

has been also related with the expression of the AR [35]. 
However, ER-α-negative BCs have been have been ben-
efitted from Tam in terms of recurrence, once Tam can 
bind directly to AR  [36]. Park and collaborators demon-
strated that that ER-α-positive and AR-positive BCs dis-
play a better prognosis compared to ER-α-negative and 
AR-positive BCs [37].

Natural product-derived compounds are being exten-
sively explored as potential cancer treatments, specially 
to overcome resistance and side effects, and to prolong 
patient’s overall survival [38, 39]. Considering ER-positive 
BC, is desirable to develop new therapeutic agents that 
modulate ER expression achieving greater effectiveness, 
with less side effects impairing thrombosis and pulmonary 
embolism detected in 10 years-treated patients [40, 41].

Brazilian flora, especially the Amazon biome, is one of 
the richest global sources of native species with poten-
tially bioactive compounds for the treatment of various 
diseases. The species Arrabidaea chica (Humb. & Bonpl.) 
B. Verlot, popularly known as “pariri” “crajiru” or “chica”, 
has been explored and its components (flavonoids, 
anthocyanins, tannins and phytosterols) isolated for the 
fight against fungi, bacteria, inflammatory processes, and 
tumors. The ability of A. chica extracts in reducing Ehr-
lich tumors without adverse effects has been previously 
describe [42]. However, the in vitro antitumor activity of 
A. chica extracts, especially in ER-positive BC, has not 
been described yet. Furthermore, its potential to induce 
cancer has not been evaluated.

The Epithelial Tumor test (ETT) has been used to 
detect epithelial tumor clones (Warts) in Drosophila mel-
anogaster. This test evaluates the carcinogenic, anticar-
cinogenic, chemopreventive, and modulatory potential 
of different substances [38, 43, 44]. The test stands outs 
for its sensibility and reliability as a toxicological test and 
detects the loss of heterozygosity of the wts tumor sup-
pressor gene, which leads to uncontrolled cell prolifera-
tion and the consequent formation of epithelial tumors 
[45]. The wts homologous gene in humans is the Large 
Tumor Suppressor Kinase 1 gene (LATS1) [46], and D. 
melanogaster shows considerable genetic homology with 
humans when compared to other mammalian models 
[47, 48] being used in important researchers related to 
treatment of tumors [49].

Here, we hypothesize that A. chica chloroform extract 
(CEAC) have selective effect across BC subtypes, modu-
lating hormone receptors and cellular response to Tam 
treatment. To test this notion, we evaluated the cytotoxic 
potential of CEAC in four BC cell lines. In ER-positive 
strains, we compared how the treatment with CEAC alone 
or with Tam altered the viability, and hormone expression 
in MCF-7 and T-47D cells. Finally, we evaluated the anti-
tumor potential of CEAC in in vivo model.
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Methods
Chemicals
High purity chemicals and reagents were purchased 
from commercial sources, and all dilutions were pre-
pared immediately before use. For in vitro assays, Dul-
becco’s Modified Eagle Medium Nutrient Mixture F-12 
(DMEM/F-12), Roswell Parki Memorial Institute (RPMI-
1640), Leibovitz’s (L-15), fetal bovine serum (FBS), Epi-
dermal Growth Factor (EGF), insulin and antibiotic 
gentamicin solution were purchased from (Gibco®). The 
3-[4,5-dimethylthiazole-2—yl]2,5-diphenyltetrazolium 
bromide (MTT), CAS 57360-69-7, dimethylsufoxide 
(DMSO), CAS 67-68-5 and hydrocortisone were pur-
chased from Sigma-Aldrich®. Tamoxifen Citrate (San-
doz) was gently donated by the Cancer Hospital from 
Federal University of Uberlandia.

For in vivo assays, Doxorubicin hydrochloride (DOX), 
commercial name Fauldoxo® (CAS 25316-40-9, batch 
19B1091, Laboratório Industrial Brasileiro de Biologia 
e Síntese - Libbs, São Paulo – Brazil) was used as posi-
tive control at 0.4 mM. This concentration was based on 
previous studies that demonstrated the induction of epi-
thelial tumors in D. melanogaster by DOX [44, 50–53]. 
Tween 80 (CAS 9005-65-6) at 1% (v/v) was used as nega-
tive control and for dilution of the compounds.

Plant material and preparation of A. chica extracts
Attending the Brazilian legislation (Law number 13.123 / 
2015) this study was registered in the National System of 
Management of Genetic Heritage and Associated Tradi-
tional Knowledge under number A5573F8.

Leaves of A. chica were collected at the Faculty of Phar-
macy’s Medicinal Herb Garden (UFJF), Juiz de Fora city, 
MG. The plant material was authenticated and stored at 
the Herbarium of the Botany Department of the Federal 
University of Juiz de Fora, MG, Brazil. The leaves (20 g) 
were dried at room temperature, powdered in a knife mill 
and firstly defatted, by maceration, using n-hexane. Based 
on previous studies that shown A. chica is rich in flavo-
noids and deoxyanthocyanidins [50], CHCl3 was chosen 
as solvent for extraction. Then, the powered material was 
extracted, by maceration, using CHCl3 as solvent. Fol-
lowing extraction, the solvent was filtered into a round 
bottom flask and removed under vacuum, at 40 °C, using 
a rotary evaporator to yield 2 g of the crude chloroform 
extract of A. chica, which was used in all assays.

Antioxidant activity
The free-radical scavenging activity was measured by 
the [2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonate)] 
(ABTS+) assay according with da Cruz et al. (2020) [54] 
with some modifications. The ABTS+ radical cation 

stock solution was prepared by mixing 7 mM ABTS+ 
with potassium persulfate (140mM), incubated at room 
temperature in the dark for 16 h. The ABTS+ was then 
diluted in ethanol until reached OD 0.700 ± 0.020 at 
734nm. CEAC (125 μg/mL; 250 μg/mL; 500 μg/mL and 
1000 μg/mL) was mixed with ABTS+ in 96-well plates. 
Absorbance was read at 415 nm using a microplate 
reader (Robonik®). Trolox was used as reference at con-
centrations ranging from 0.1 to 2 mM and the results 
were expressed as Trolox equivalents.

Cell culture
Four established breast cell lines were used through-
out this study: (i) MCF 10A, non-tumorigenic, grown 
in DMEM/F-12 medium supplemented with 10 μg/mL 
of EGF, 0,25 μg/mL of Hydrocortisone and 10 μg/mL of 
insulin; (ii) MCF-7, ER-positive BC, maintained in RPMI-
1640 medium; (iii) T-47D, ER-positive BC, also kept in 
RPMI-1640 medium supplemented with 10 μg/mL of 
insulin, and (iv) MDA-MB-231, triple-negative BC, cul-
tured in L15 medium. The cell lines were obtained from 
American Type Culture Collection and confirmed to be 
free of mycoplasma contamination.

Tamoxifen-resistant MCF7 cells (MCF-7/TamR) were 
obtained after prolonged and continuous exposure of the 
MCF7 lineage to Tam (ranging from 0.1 μM to 1.0 μM) for 
a period of three months, as previously described [51–54].

All strains were supplemented with 10% of FBS, and 50 
μg/mL of gentamycin, and kept in culture at 37° C in an 
atmosphere of 5% CO2 (Thermo Scientific™ Forma Series 
3 Water Jacketed CO2 Incubator). For the cell line MDA-
MB-231 the flasks were kept closed, free from CO2.The 
medium was changed on alternate days, until cell reached 
80-90% confluence, when they were used in subsequent 
experiments.

Cell viability assay
The cell viability was evaluated by MTT reduction follow-
ing previously instructions published by [55], with minor 
modifications. The four cell lines were cultured and, after 
confluence and trypsinization, 1x104 cells of each line-
age were seeded in 96-well microplates with proper cul-
ture conditions for 24 h. Subsequently, cells were treated 
with 7 μg/mL, 15 μg/mL, 30 μg/mL, 62 μg/mL, 125 μg/
mL, 250 μg/mL, 500 μg/mL and 1000 μg/mL of CEAC for 
24 and 48 h. MTT solution (5mg/mL) was then added, 
incubated for 4 h, and the supernatant was carefully dis-
carded. The insoluble formazan crystals produced by 
intracellular dehydrogenase was solubilized with DMSO, 
and the absorbance of each well was determined at 570 
nm using Automatic Elisa Plate Reader (IndiaMART, DD 
Bioinfotech / Nathupura, New Delhi).
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Each sample was measured in triplicate, and each 
experiment was repeated three times (n= 3). The mean 
OD of the treated cells was compared to the mean OD 
of the control wells (treated with vehicle only-DMSO) 
[55]. Wells with complete medium, without cells, 
were considered as blank. Cell viability was reported 
according to Formula (F1) = [(Absample-Absblank)/
(AbsDMSO-Absblank)*100].

The half maximal inhibitory concentration (IC50) was 
calculated by non-linear regression from a dose-response 
curve between the compound concentration and per-
cent growth inhibition [56], using the GraphPad Prism 
6.0 software (GraphPad Software, San Diego, CA, USA). 
Selective indexes (SI) were also calculated using the For-
mula (F2) = SI = IC50-MCF 10A/IC50-BC cells. Values of 
SI ≥ 2.0 are considered significant [57].

The CEAC was selective to ER-positive BC cells. For 
this reason, the viability of T-47D and MCF-7 cells was 
further evaluated, as described above, after treatment, for 
48 h, with CEAC at 1000 μg/mL; 1 μM and 2 μM of Tam 
[58, 59], alone. Cells were also treated with CEAC associ-
ated with Tam at 1 μM and 2 μM simultaneously or with 
one compound followed by the other. Finally, the viability 
of MCF-7/TamR cells was evaluated under the same con-
ditions mentioned above.

qPCR analysis
Total RNA was isolated from MCF-7, T-47D and MCF-7/
TamR cells treated with CEAC (1000 μg/ mL), Tam 
(1μM), and CEAC associated with Tam for 48 h, using 
Trizol® reagent (Invitrogen). The protocol was followed 
according to the supplier’ instructions. Cells treated with 
DMSO were included as control. q-PCR was carried out 
to evaluate the capacity of CEAC and Tam to modulate 
the transcriptional levels of ESR1, ESR2 and AR in ER-
positive BC cell lines. The quality of extracted RNA was 
verified by electrophoresis on 1.5% agarose gel, stained 
with GelRed 1x (Uniscience), as well as by the reason 
of the spectrophotometric readings at 260 and 280 nm 
(Nanodrop 1000-ThermoFischer). First-strand cDNA was 
synthetized as previously described [60].

q-PCR was carried out on StepOnePlus Systems 
(Applied Biosystems), using 5.0 μM of specific prim-
ers designed for each gene as follows: ESR1 - F: CTA​
ACT​TGC​TCT​TGG​ACA​GGAAC / R: GAT​TTG​AGG​
CAC​ACA​AAC​TCCTC; ESR2 - F: GGG​AAT​GGT​GAA​
GTG​TGG​CT / R: TCA​TGT​GTA​CCA​ACT​CCT​TGT​
CGG; AR: F: CAT​GTG​GAA​GCT​GCA​AGG​TCT / R: 
GTG​TAA​GTT​GCG​GAA​GCC​AGG [38, 60]. Transcripts 
were quantified by ΔCq method after relative standard 
curve optimization with 5.0 μL of Power SYBR Green 
PCR Master Mix (Applied Biosystems, Carlsbad, CA, 
USA) and 2.0 μL cDNA. All data were normalized by 

β-2-microglobulin (β2M) gene (F: CCT​GCC​GTG​TGA​
ACC​ATG​T / R: GCG​GCA​TCT​TCA​AAC​CTC​C) [60].

Epithelial Tumor Test (ETT)
Four concentrations of CEAC were defined (2.5, 5.0, 
10.0 and 20.0 μg/μL) to be used in in vivo assay, and ETT 
was performed according to the methods proposed by 
Costa and contributors [61]. Heterozygotic larvae wts 
+/+ mwh were obtained from the cross between vir-
gin females wts/TM3, Sb1 [45] with males mwh/mwh 
[61]. Third-instar larvae (72 ± 4 h) were submitted to a 
chronic treatment for about 48h. The D. melanogaster 
strains were kept under optimal laboratory conditions 
(25 ± 4 °C and 65% RH) in BOD-type chamber (Model: 
SL224, SOLAB – Equipamentos para Laboratórios, São 
Paulo, SP, Brazil).

At first, the toxicity test (TX) was carried out to assess 
the lethal concentration of CEAC for D. melanogaster. 
Larvae of third-instar (72 ± 4 h) were counted and placed 
in separate tubes containing 1.5 g of culture medium 
(mashed potatoes) [44, 62] for D. melanogaster with 5.0 
mL of different concentrations of CEAC, alone (2.5, 5.0, 
10.0 e 20.0 μg/μL) or in association with DOX (CEAC at 
2.5, 5.0, 10.0 μg/μL, and DOX at 0.4 mM). The number of 
surviving flies per treatment were counted and provided 
an indicator of the toxicity of the compound [48].

Based on TX test, we performed ETT in post-treat-
ment format [43, 48, 61]. The larvae were pre-treated 
with DOX at 0.4 mM to induce tumors and, after 6 h, 
the third stage larvae (72 ± 4 h) were washed and sub-
jected to chronic treatment with CEAC at 2.5, 5.0, 10.0 
μg/μL. Three controls were included: (i) negative control 
reverse osmosis water; (ii) solvent control with tween 80 
1% (v/v) used to dilute CEAC; and (iii) positive control 
with DOX at 0.4mM. All experiments were conducted in 
quadruplicate.

Emerging adult flies from the different treatments 
were collected and kept in ethanol 70%. Only adult flies 
without the chromosome balancer TM3, Sb1 were ana-
lyzed, which can be differentiated phenotypically by the 
absence of truncated bristles [43, 45 48]. Tumors can be 
detected in all segments of the fly and D. melanogaster 
stands out for being an experimental model useful in 
genetic toxicology tests, as well as in studies of DNA 
repair processes.

Statistical analyses
Data were expressed as the mean ± standard deviation 
(SD) from three independent experiments. For the MTT 
assay, differences between the viability across cells lines 
were determined using one-way analysis of variance 
(ANOVA) and the Tukey HSD post hoc. Gene expres-
sion data were compared through Student’s independent 
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t-test. Statistical comparisons of survival rates (TX) of 
D. melanogaster were performed using the Chi-squared 
(X2) test for ratios of independent samples. All the above 
results were analyzed using the GraphPad Prism 7.0 

(GraphPad Software Inc., La Jolla, CA, EUA). Statistical 
significance was considered when p < 0.05.

The A. chica carcinogenic and/or anticarcinogenic 
potential, evaluated in ETT test, was determined by the 
Mann, Whitney and Wilcoxon nonparametric U test, 
with α=0.05 level of significance, using Prophet 5.0 
(Phophet Software).

Results
Antioxidant potential and cytotoxicity
The antioxidant potential of CEAC was determined by 
the radical scavenging activity using the ABTS+ method 
and the results expressed as % of inhibition relative to 
Trolox as reference standard. The ABTS+ test showed 
radical scavenging activities in a dose dependent manner, 
and, in the highest concentration of CEAC (1000 μg/mL), 
the ABTS+ radicals were inhibited by 51.92%, showing 
the antioxidant potential of the extract (Fig. 1).

Subsequently, we evaluated the cytotoxic effect of 
CEAC on human breast cell lines including tumo-
rigenic (T-47D, MCF-7, and MDA-MB-231) and non-
tumorigenic (MCF 10A) lineages through MTT assay, 
performed for 24 (Fig.  2A) and 48 hours (Fig.  2B). The 
cellular behavior was similar in both treatments in which 
the viability of the MCF 10A lineage was maintained at 
around 57% for all tested concentrations. The cytotoxicity 

Fig. 1  Antioxidant activity of the chloroform extract of Arrabidaea 
chica (CEAC) evaluated by the ABTS+ method. The tested 
concentrations of CEAC were 125 μg/mL, 250 μg/mL, 500 μg/mL 
and 1000 μg/mL. The results are represented relative to Trolox, as 
reference standard

Fig. 2  Cytotoxic effects of chloroform extract of Arrabidaea chica (CEAC) on human luminal breast cancer cells T-47D, MCF-7. The non-tumorigenic 
cell line MCF 10A and the triple-negative breast cancer cell MDA-MB231 were included in this study. Cells treated with DMSO (diluent) were used 
as control. Treatments were performed on the four cell lines with different concentrations of CEAC for 24 (A) and 48 hours (B). Cell viability rates 
of luminal breast cancer cell lines were also recorded after treatment with CEAC and Tamoxifen (Tam) for 48 hours in T-47D (C) and MCF-7 (D) cell 
lines. Cells were treated with CEAC and Tam in isolation and combined. Data are presented as mean ± S. D of three independent experiments. 
Significance was calculated by one-way ANOVA, and Tukey’s post hoc test. # treatments with DMSO differed from all treatments with CEAC, p < 
0.0001. a: treatment in MCF-7 differed from treatment in MCF 10A. b: treatment in MCF-7 differed from treatment in T-47D. (*p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001)
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of CEAC was significantly higher for MCF-7 cells when 
compared to control (cells treated with DMSO, only) and 
to other cell lines, mainly in concentrations above 62 μg/
mL. The IC50 of CEAC on MCF-7 cells was estimated at 8 
μg/mL, with SI of 180.87.

As the viability of the non-tumorigenic cell MCF 10A 
did not differ across treatments and CEAC was selec-
tive for luminal breast tumor cells, the concentration of 
1000 μg /mL was used for further experiments in treat-
ments for 48 hours in T-47D and MCF-7 cell lines, which 
express ER. Tam is widely used as ER antagonist, and it is 
the first line therapy for ER-positive BC. However, 40% 
of women receiving Tam develop resistance, which com-
prises treatment and patient’s survival [63]. Therefore, 
we compared the cellular effects of CEAC with Tam (1 
μM and 2 μM) in isolated and combined treatments. All 
treatments differed from the control with diluent and the 
behavior of both cells was not different according to the 
Tam concentration. The effects were similar for 1 μM and 
2 μM of Tam.

For the T-47D cell line (Fig. 2C), treatment with CEAC 
alone significantly reduced viability when compared to 
treatments with Tam alone. However, the cytotoxic effect 
was even greater when CEAC was combined with Tam. 
The viability of T-47D cells after treatment with CEAC 

was 53% and with CEAC + Tam (1 μM) was 34%. Tam 
also significantly decreases the viability of the MCF-7 
cells (Fig.  2D). However, corroborating with our data, 
the cytotoxicity of CEAC for the MCF-7 was even more 
expressive and significantly higher when the extract was 
combined with Tam. Therefore, the viability of MCF-7 
cells after treatment with CEAC was 7% and with 
CEAC+Tam (1 μM) was 4%The lowest concentration of 
Tam was then defined for further molecular assays.

Modulation of hormone receptors transcriptional levels
The expression of the ESR1, ESR2 and AR genes was 
quantified in T-47D and MCF-7 cell lines treated with 
CEAC (1000 μg /mL) and Tam (1μM), alone and with 
CEAC + Tam (combined treatment) for 48 hours (Fig. 3). 
As expected, MCF 10A and MDA-MB231 do not express 
hormone receptors (Fig. 3A-C).

In the T-47D cells (Fig.  3D) the expression of ESR1 
decreased by 5.6-fold (p <0.01) and 4.2-fold (p <0.001) 
after treatments with CEAC or Tam, respectively, 
when compared to control (cells treated with diluent). 
When CEAC was associated with Tam, the expression 
of ESR1 increased, and differed only from the treat-
ment with the extract alone. Regarding the ESR2 gene 
(Fig.  3E), although slightly higher, its expression did 

Fig. 3  Relative levels of hormone receptors transcripts after treatment with the chloroform extract of Arrabidaea chica (CEAC) and Tamoxifen (Tam). 
Gene expression levels were recorded without treatment in MCF 10A, T-47D, MCF-7 and MDA-MB231 cell lines (A, B, C). T-47D (D, E, F) and MCF-7 
(G, H, I) cell lines were treated with 1000 μg /mL of CEAC, Tam (1 μM) and CEAC + Tam (1000 μg /mL, and 1 μM, respectively) for 48 h. The relative 
expression levels of the genes encoding for Estrogen Receptor alpha (ESR1), Estrogen Receptor beta (ESR2), and Androgen receptor (AR) were 
quantified by the comparative Cq method. * p <0,05, ** p <0,01, *** p <0,001 e **** p <0,0001
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not differ from the control in T-47D cells treated with 
CEAC. ESR1 levels decreased significantly when T-47D 
cells were treated with Tam alone (22.7-fold) and with 
CEAC + Tam (3.5-fold), compared to control. When 
treatment with CEAC was compared with Tam, ESR2 
transcripts were 27.8-fold higher after treatment with 
CEAC. For both receptors, the combined treatments 
did not promote a significant difference in gene expres-
sion compared to treatment with Tam alone. Analysis 
of AR expression (Fig. 3F) revealed that the transcripts 
were differentially modulated between experiments, 
with higher AR transcriptional levels in the combined 
treatment of CEAC + Tam. Interestingly, CEAC + Tam 
treatment led to an increase in AR expression and a 
rescue of ESR1 expression that, accordingly to Park and 
collaborators, would represent a BC with better out-
come. Moreover, when Tam was associated to CEAC, 
there was a partial rescue of ESR2 expression that, 
accordingly to the above researchers, could avoid the 
establishment of Tam resistance [37].

For the MCF-7 cells CEAC was responsible for promot-
ing a decrease in ESR1 expression (alone or combined 
with Tam) (Fig. 3G), and an increase in ESR2 transcripts, 
which was 6.2-fold higher when compared to control (p 
<0.01), 105.6-fold higher when compared to treatment 
with Tam (p <0.01), and 99.4-fold higher when compared 
to CEAC + Tam treatment (p <0.001) (Fig. 3H). Finally, 
the AR transcripts were downregulated after treatment 
of MCF-7 with CEAC, upregulated after treatment with 
Tam alone and upregulated at higher levels with CEAC + 
Tam treatment (Fig. 3I).

As CEAC modulated the expression of ESR2 we tested 
the effect of the extract before or after treatment with 
Tam at 48 hours intervals (Fig. 4). Interestingly, the via-
bility of the T-47D (Fig.  4A) and MCF-7 (Fig.  4B) cell 
lines was significantly compromised. Furthermore, the 
initial treatment with CEAC (1000 μg/mL) followed by 
Tam (1 μM) showed a greater reduction in viability. For 
T-47D cells the viability reached 14% and for the MCF-7 
lineage 3%.

Fig. 4  Cell viability rates of luminal breast cancer cell lines after alternate treatment with chloroform extract of Arrabidaea chica (CEAC) and 
Tamoxifen (Tam) for 48 hours. T-47D (A) and MCF-7 (B) cell lines were treated with CEAC followed by Tam (1μM) or with Tam (1μM) followed by 
CEAC (1000 μg/mL). Data are expressed as means ± SD, n = 3. Significance (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001) was calculated by 
one-way ANOVA, and Tukey’s post hoc test. # treatments with DMSO (control) differed from all treatments with CEAC, p < 0.0001
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Cytotoxicity and modulation of hormone receptors 
in MCF‑7/TamR
Treatment with CEAC alone reduced the viability of the 
MCF-7/TamR lineage by 90% (Fig. 5A), differing signifi-
cantly from control and treatment with Tam. However, 
the profile of resistant cells treated with CEAC + Tam 
did not differ from the cytotoxic effect observed for the 
extract alone. As for hormone receptors (Fig. 5B), CEAC 
was responsible for decreasing the expression of ESR1 
and AR in these cells and for increasing ESR2 gene tran-
scripts, compared to the control. For CEAC + Tam treat-
ments, only ESR2 transcripts were upregulated and Tam 
treatments did not differ from control.

We also investigated the effect of the extract before or 
after treatment with Tam at 48-hour intervals (Fig. 5C). 
The viability of the MCF-7/TamR lineage was signifi-
cantly decreased under all conditions. However, previ-
ous treatment with CEAC (1000 μg/ml) followed by Tam 
(1 μM) promoted a significantly greater reduction in the 
viability of resistant cells.

Effect of CEAC on D. melanogaster
D. melanogaster has been used for more than 50 years 
as a model for human diseases related to alterations in 
replication, DNA repair, translation, drug metabolism 
and in toxicological research. Among the several advan-
tages of using D. melanogaster stands out its genetic 
and metabolic similarity with humans and its ability to 

enzymatically activate promutagens and procarcinogens 
in vivo [48].

At first, CEAC toxicity was investigated to define the 
concentrations to be used in ETT assay. The percent-
age of surviving flies from treatment with tween 80 at 
1% (negative control) and with DOX 0.4 mM (positive 
control) did not differ statistically from treatment with 
reverse osmosis water (negative control). Regarding 
treatment of CEAC (2.5, 5.0, 10 and 20 μg /μL) (Fig. 6A), 
the extract was not significantly toxic to D. melanogaster 
larvae when compared to the negative control and there-
fore was used in subsequent experiments.

CEAC at concentrations of 2.5, 5.0 and 10.0 μg/μL was 
then assessed by ETT (Fig.  6B-Table  1), and no statisti-
cally significant carcinogenic effect of the extract was 
identified when compared to the negative control. As 
expected, the solvent control (Tween 80 at 1%) did not 
differ statistically from the negative control (reverse 
osmosis water); and DOX 0.4 mM (positive control) gen-
erated significantly more tumors than the negative con-
trol. This concentration of DOX was based on previous 
studies that demonstrated the induction of epithelial 
tumors in D. melanogaster treated with DOX 0.4 mM 
[38, 43].

Finally, the anticarcinogenic potential of CEAC is rep-
resented in Fig. 6C. The individuals were pre-treated with 
DOX (0.4 mM) for a period of 6 hours and later treated 
with different concentrations of CEAC (2.5, 5.0 and 10.0 

Fig. 5  Effect of chloroform extract of Arrabidaea chica (CEAC) and Tamoxifen (Tam) on tamoxifen-resistant MCF7 cells (MCF-7/TamR). Cell viability 
of MCF-7/TamR cells after treatment with CEAC (1000 μg/mL), Tam (1μM) or with CEAC + Tamfor 48 hours (A). Relative levels of hormone receptors 
transcripts after treatment with CEAC, Tam or CEAC + Tam. Gene expression was recorded through Cq method (B). MCF-7/TamR cell lines were 
also treated with CEAC followed by Tam (1μM) or with Tam (1μM) followed by CEAC (1000 μg/mL) and the viability evaluated by MTT (C). Data are 
expressed as means ± SD, n = 3. Significance (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001) was calculated by one-way ANOVA, and Tukey’s 
post hoc test. # treatments with DMSO differed from all treatments, p < 0.0001. ESR1: Estrogen Receptor alpha, ESR2: Estrogen Receptor beta (ESR2), 
and AR: Androgen receptor
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μg/μL). The findings for all three concentrations evalu-
ated differed significantly from the positive control, with 
a significant reduction in the frequency of total number 
of tumors in CEAC-treated flies. The inhibition percent-
ages of each concentration (2.5, 5.0 and 10.0 μg/μL) were 
92%, 91.4% e 91.8%, respectively (Table 1).

The frequency of tumors was analyzed in different 
segments, and significance was calculated by the Mann-
Whitney Test. aValues considered different from the nega-
tive control (p <0.05). ns Values considered not significant 
when compared to the negative control. bValues consid-
ered significant when compared to the positive control 
(DOX 0.4 mM). Frequency: number of tumors / fly

Discussion
The present study reveals CEAC as an estrogenic and 
androgenic modulator, potentially promising in the treat-
ment of luminal BC and tamoxifen-resistant cells. Luminal 
breast tumors express ER and are responsive to endocrine 
therapy. Estrogen mediates breast cell growth [38, 55] and 
is associated with etiology of BC being an important target 
for ER antagonists, such as Tam [59]. However, despite the 
good prognosis, treatment for ER-positive breast tumors 
remains challenging, as therapeutic resistance has compro-
mised patients’ survival [57, 58]. Hormonal status has been 
shown to be decisive in clinical outcome and understand-
ing how different compounds alter the expression of recep-
tors has been crucial for BC management.

Natural products are versatile and perform important 
antitumor activities, as they act in different pathways, 
blocking tumorigenesis and controlling the progression 

of transformed cells [32]. A. chica protective effects 
involve the reduction of ROS levels and lipid peroxi-
dation supporting the antioxidant potential of CEAC 
identified in the present study using the ABTS+ method. 
In addition, this species increases of collagen content 
during the healing process, with analgesic properties 
through the inhibition of cyclooxygenases [33, 64–67] 
also demonstrated that the plant extract alone, or asso-
ciated with vincristine, decreased serum transaminases 
levels, oxidative stress, and hematological toxicity. Our 
work is pioneer in demonstrating the role of A. chica in 
the modulation of hormone receptors.

In in vitro assays with breast cell lines, CEAC substan-
tially inhibited the viability of MCF-7 cells, with SI of 
180.87. As MCF-7 cells are ER-positive, the results raised 
the question about the extract’s ability to modulate hor-
mone receptors. The ER response is the result of a balance 
between the signaling pathways of two divergent isoforms 
ER-α and ER-β [68]. ER-α expression is associated with the 
development, growth and metastasis of BC [69], and ER-β 
has been described as tumor suppressor. In addition, ER-β 
expression independently predicts better disease-free sur-
vival in patients treated with Tam [70]. In the present study, 
ESR1 transcriptional levels were downregulated after treat-
ment of MCF-7 cells with CEAC, and ESR2 gene expres-
sion was upregulated. This behavior was also observed in 
treatments performed in tamoxifen-resistant cells. There-
fore, the observed cytotoxicity can be related to the extract’s 
ability to modulate ERs, which led us to the hypothesis 
about the possibility of the compound being combined 
with Tam in the treatment of luminal BC cell lines.

Fig. 6  In vivo assays performed with D. melanogaster treated with the chloroform extract of Arrabidaea chica (CEAC). Percentage of survival of 
D. melanogaster treated with CEAC (A). Treatments were conducted with CEAC (2.5, 5.0, 10.0 and 20.0 μg/μL). Flies, heterozygous for the Warts 
tumor suppressor gene, were further treated with different concentrations of CEAC (2.5, 5.0 and 10.0 μg/μL) and total tumors were recorded to 
demonstrate the carcinogenic (B) effect of CEAC. To demonstrate the anticarcinogenic effect of CEAC (C) flies were pre-treated with Doxorubicin 
(DOX 0.4 mM) and, subsequently, chronic treated for 48h with different concentrations of the extract. The frequency of tumors was analyzed in 
different segments, and significance was calculated by the Mann-Whitney Test. **Values considered significant when compared to the positive 
control (DOX 0.4 mM). *Values considered different from the negative control (P < 0.05). NC, negative control (osmosis reverse water). SC, solvent 
control (Tween 80 1%). PC, positive control (DOX 0.4mM). NC: Negative control (reverse osmosis water); SC: Solvent control (Tween 80 at 1%); PC: 
Positive control (DOX 0.4 mM)
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When CEAC was combined with Tam, the treatment 
was slightly more cytotoxic to the T-47D and MCF-7 
strains. However, for ERs, there was no difference in the 
expression of these genes compared to treatments with 
Tam alone. For AR, also evaluated in the present study, 
the modulatory effects were more evident, and similar 
between the T-47D and MCF-7 with lower mRNA lev-
els when cells were treated with CEAC and higher lev-
els when treated with CEAC + Tam. AR stimulates cell 
proliferation, promotes metastasis and favors resistance 
to endocrine therapy [71–73]. Previous studies indi-
cated that one third of all patients develop resistance to 
Tam, even though ER-α positivity remains unchanged 
[74, 75]. In addition, in vitro experiments confirmed a 
low expression of ER-β in tumors resistant to Tam [53]. 
Our results demonstrated decreased expression of ESR2 
when cells were treated with Tam alone. In the treatment 
with CEAC + Tam, this profile was maintained in MCF-7 
and a partial rescue of ESR2 was obtained in T47-D 
cells. This partial rescue could indicate a possible effect 
of CEAC in diminishing the development of Tam resist-
ance in T47D cells. Moreover, Tam + CEAC treatment 
leads to the maintenance of ERS1 and AR levels which, 
accordingly to Park and collaborators, would represent a 
BC with better outcome [37]. Interestingly, the effect of 
Tam on AR expression was different in MCF-7 cells com-
pared to T47D cells. In T47 D cells, Tam decreased AR 
expression while in MCF7 cells there was an increase in 
AR expression. Since T47D are considered a more Tam 
resistant cell line compared to MCF-7 cells [76], this 
effect on AR expression could be responsible for the dif-
ferent Tam sensitivity. On the other hand, treatment with 
CEAC alone achieves one of the main objectives of endo-
crine therapy by increasing the expression of ESR2 and 
decreasing that of ESR1 and AR in MCF-7 cells and in 
MCF-7/TamR.

In this context, enhanced ER-β signaling can modu-
late ER-α and AR signaling without complete ablation of 
hormones [77–82]. We suggest that the different effects 
between isolated and combined treatments may result 
from competition and / or antagonisms between CEAC 
and Tam, which needs to be further investigated. We 
therefore suggest the treatment with CEAC as comple-
mentary to Tam, once, the expression and ER-β can sen-
sitize cells to Tam [83–86]. This effect was proven for 
T-47D cells and MCF-7/TamR. The initial treatment with 
CEAC and then with Tam substantially reduced the via-
bility of T-47D cells to 14% and to 11% in MCF-7/TamR. 
This behavior may be associated with CEAC’s ability to 
modulate ESR2 [87–89]. However, further studies are 
needed to define the therapeutic design and to evaluate 
the inclusion of CEAC in the treatment of women resist-
ant to Tam. Finally, our results demonstrated a different 

response profile between the two cell lines of luminal BC. 
Therefore, we suggest a deeper study of the molecular 
characterization of luminal breast tumors, as these sub-
types may require different therapeutic regimens, which 
may be limiting for the prognosis of patients.

Regarding the in vivo assays, CEAC (2.5, 5.0, 10.0 and 
20.0 μg/μL) did not show significant toxicity for D. mela-
nogaster, validating the safety of these concentrations. In 
the ETT assay, CEAC did not demonstrate carcinogenic 
effect at the three concentrations tested (2.5, 5.0 and 
10.0 μg/μL). Previous studies have reported that aque-
ous, butanolic and chloroform extracts of A. chica did 
not cause mutagenic effect in strains of Salmonella. Even 
with metabolic activation, the chloroform extract did not 
show mutagenic effect suggesting the absence of phyto-
chemicals capable of inducing frameshift mutation [43, 
62, 90, 91]. Although mutagenicity is an inherent factor 
in carcinogenicity, both mutagens and non-mutagens 
compounds can generate transformed cells inducing dif-
ferent cancer hallmarks, including cellular proliferation 
[43, 62, 92]. Thus, the absence of a mutagenic effect cor-
roborates and reinforces our results on the absence of 
CEAC carcinogenic potential, supporting the safety of 
the compound.

Table  1 shows the post treatment model, in which 
the tumor was induced with DOX (0.4mM) so that the 
larvae were subjected to chronic treatment with dif-
ferent concentrations of CEAC (2.5, 5.0 and 10.0 μg/
μL). The wts gene is maintained in heterozygosity in 
stock of D. melanogaster in the presence of a chromo-
somal balancer (TM3). The loss of heterozygosity in the 
cells of the larval imaginal disc leads to the prolifera-
tion of cell clones as tumors in adults [43, 93]. DOX at 
0.4 mM has a carcinogenic effect on somatic cells of 
D. melanogaster [44, 48, 94], which was reversed with 
CEAC treatment, showing its ability to reduce epi-
thelial tumors. In this context, we suggest that CEAC 
increases the antioxidant potential of D. melanogaster 
cells, helping to reduce the damage caused by metab-
olites generated by DOX, which mimics the genomic 
damage that cause tumors. The synchronism between 
DNA replication, with the repair of damage, and the 
progression of the cell cycle ensure the integrity of the 
genome avoiding mutations and rearrangements in the 
DNA [95, 96]. Chromosomal mutations or aberrations 
affect oncogenes and tumor suppressor genes leading to 
the malignant transformation [48, 97]. Thus, genomic 
instability is associated with serious pathological dis-
orders such as cancer [44, 48, 98–101]. In addition, 
CEAC induces apoptosis of damaged cells during the 
embryonic development of the larvae, with consequent 
reduction of tumors in adults. Therefore, we also sug-
gest that, in the post-treatment, the anticarcinogenic 
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effect of CEAC is due to the increased activity of pro-
teins involved in repair pathways related to the tumor 
suppressor gene Warts, which promoted the control 
of cell proliferation and reduction of the formation of 
epithelial tumors. Importantly, we use the ETT test that 
assesses the toxicity, mutagenicity and carcinogenicity 
of different compounds [98, 102–105], based on pheno-
typic effects. However, it has been shown that aqueous 
and ethanolic extracts of A. chica inhibit inflammatory 
and angiogenic processes [89, 106, 107] and that its 
ethanolic extract also reduces the lipid oxidative stress 
marker malondialdehyde [67, 108]. In the present work 
we also suggest its role in the modulation of hormone 
receptors.

Conclusion
Our study confirmed the antioxidant activity of CEAC, 
emphasizing its important role in carcinogenesis. The 
bioassays on breast tumor cells demonstrated the anti-
proliferative activity of the extract, being selective to 
the BC luminal cells. CEAC modulated the expression 
of ESR1, ESR2 and AR. In in vivo tests, CEAC was not 
toxic to D. melanogaster, demonstrated anticarcino-
genic action, and controlled tumor formation in DOX-
treated flies.

As far as we are aware, this is the first study of the 
hormone modulatory effect of CEAC on BC cells 
and the anticarcinogenicity effect of CEAC. It will be 
important to confirm our results in other animal mod-
els, as well as further experiments that seek to discover 
additional mechanisms of this extract in BC.
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